30 research outputs found

    Heat pumping with optically driven excitons

    Full text link
    We present a theoretical study showing that an optically driven excitonic two-level system in a solid state environment acts as a heat pump by means of repeated phonon emission or absorption events. We derive a master equation for the combined phonon bath and two-level system dynamics and analyze the direction and rate of energy transfer as a function of the externally accessible driving parameters. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon environment becomes possible

    Spin detection at elevated temperatures using a driven double quantum dot

    Get PDF
    We consider a double quantum dot in the Pauli blockade regime interacting with a nearby single spin. We show that under microwave irradiation the average electron occupations of the dots exhibit resonances that are sensitive to the state of the nearby spin. The system thus acts as a spin meter for the nearby spin. We investigate the conditions for a non-demolition read-out of the spin and find that the meter works at temperatures comparable to the dot charging energy and sensitivity is mainly limited by the intradot spin relaxation.Comment: 8 pages, 6 figure

    Calibration and High Fidelity Measurement of a Quantum Photonic Chip

    Full text link
    Integrated quantum photonic circuits are becoming increasingly complex. Accurate calibration of device parameters and detailed characterization of the prepared quantum states are critically important for future progress. Here we report on an effective experimental calibration method based on Bayesian updating and Markov chain Monte Carlo integration. We use this calibration technique to characterize a two qubit chip and extract the reflectivities of its directional couplers. An average quantum state tomography fidelity of 93.79+/-1.05% against the four Bell states is achieved. Furthermore, comparing the measured density matrices against a model using the non-ideal device parameters derived from the calibration we achieve an average fidelity of 97.57+/-0.96%. This pinpoints non-ideality of chip parameters as a major factor in the decrease of Bell state fidelity. We also perform quantum state tomography for Bell states while continuously varying photon distinguishability and find excellent agreement with theory

    Demonstration of Free-space Reference Frame Independent Quantum Key Distribution

    Full text link
    Quantum key distribution (QKD) is moving from research laboratories towards applications. As computing becomes more mobile, cashless as well as cardless payment solutions are introduced, and a need arises for incorporating QKD in a mobile device. Handheld devices present a particular challenge as the orientation and the phase of a qubit will depend on device motion. This problem is addressed by the reference frame independent (RFI) QKD scheme. The scheme tolerates an unknown phase between logical states that varies slowly compared to the rate of particle repetition. Here we experimentally demonstrate the feasibility of RFI QKD over a free-space link in a prepare and measure scheme using polarisation encoding. We extend the security analysis of the RFI QKD scheme to be able to deal with uncalibrated devices and a finite number of measurements. Together these advances are an important step towards mass production of handheld QKD devices

    Dynamical instabilities of a resonator driven by a superconducting single-electron transistor

    Full text link
    We investigate the dynamical instabilities of a resonator coupled to a superconducting single-electron transistor (SSET) tuned to the Josephson quasiparticle (JQP) resonance. Starting from the quantum master equation of the system, we use a standard semiclassical approximation to derive a closed set of mean field equations which describe the average dynamics of the resonator and SSET charge. Using amplitude and phase coordinates for the resonator and assuming that the amplitude changes much more slowly than the phase, we explore the instabilities which arise in the resonator dynamics as a function of coupling to the SSET, detuning from the JQP resonance and the resonator frequency. We find that the locations (in parameter space) and sizes of the limit cycle states predicted by the mean field equations agree well with numerical solutions of the full master equation for sufficiently weak SSET-resonator coupling. The mean field equations also give a good qualitative description of the set of dynamical transitions in the resonator state that occur as the coupling is progressively increased.Comment: 23 pages, 6 Figures, Accepted for NJ

    Statistics of charge transfer in a tunnel junction coupled to an oscillator

    Full text link
    The charge transfer statistics of a tunnel junction coupled to a quantum object is studied using the charge projection technique. The joint dynamics of the quantum object and the number of charges transferred through the junction is described by the charge specific density matrix. The method allows evaluating the joint probability distribution of the state of the quantum object and the charge state of the junction.The statistical properties of the junction current are derived from the charge transfer statistics using the master equation for the charge specific density matrix. The theory is applied to a nanoelectromechanical system, and the influence on the average current and the current noise of the junction is obtained for coupling to a harmonic oscillator.Comment: 18 pages, 3 figure

    Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases

    Full text link
    C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present infrared and Raman spectra of these materials and show how the rotor-stator nature is reflected in their vibrational properties. We measured the vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8) resulting from a solid state reaction occurring on heating. Based on the spectra we propose a connection pattern for the fullerene in poly(C60C8H8), where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal with green or blue light a photochemical reaction was observed leading to a similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd version: minor changes in wording, accepted version by journa

    Reference-Frame-Independent Quantum-Key-Distribution Server with a Telecom Tether for an On-Chip Client

    Get PDF
    We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering

    A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+dynamics.

    No full text
    Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system
    corecore